{ "cells": [ { "cell_type": "markdown", "id": "0", "metadata": {}, "source": [ "# XRT Blop Demo" ] }, { "cell_type": "markdown", "id": "1", "metadata": {}, "source": [ "For ophyd beamline setup see: \n", "- https://github.com/NSLS-II/blop/blob/main/src/blop/sim/xrt_beamline.py\n", "- https://github.com/NSLS-II/blop/blob/main/src/blop/sim/xrt_kb_model.py\n", "\n", "The picture below displays beam from geometric source propagating through a pair of toroidal mirrors focusing the beam on screen. Simulation of a KB setup.\n", "\n", "![xrt_blop_layout_w.jpg](../_static/xrt_blop_layout_w.jpg)" ] }, { "cell_type": "code", "execution_count": null, "id": "2", "metadata": {}, "outputs": [], "source": [ "from blop.utils import prepare_re_env # noqa\n", "%run -i $prepare_re_env.__file__ --db-type=temp\n", "bec.disable_plots()" ] }, { "cell_type": "code", "execution_count": null, "id": "3", "metadata": {}, "outputs": [], "source": [ "import sys, os\n", "from matplotlib import pyplot as plt\n", "from blop.sim.xrt_beamline import Beamline\n", "\n", "from blop import DOF, Objective, Agent\n", "from blop.digestion import beam_stats_digestion\n", "import time" ] }, { "cell_type": "code", "execution_count": null, "id": "4", "metadata": {}, "outputs": [], "source": [ "plt.ion()\n", "\n", "h_opt = 0\n", "dh = 5\n", "\n", "R1, dR1 = 40000, 10000\n", "R2, dR2 = 20000, 10000" ] }, { "cell_type": "code", "execution_count": null, "id": "5", "metadata": {}, "outputs": [], "source": [ "beamline = Beamline(name=\"bl\")\n", "time.sleep(1)\n", "dofs = [\n", " DOF(description=\"KBV R\",\n", " device=beamline.kbv_dsv,\n", " search_domain=(R1-dR1, R1+dR1)),\n", " DOF(description=\"KBH R\",\n", " device=beamline.kbh_dsh,\n", " search_domain=(R2-dR2, R2+dR2)),\n", "\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "6", "metadata": {}, "outputs": [], "source": [ "objectives = [\n", " Objective(name=\"bl_det_sum\", \n", " target=\"max\",\n", " transform=\"log\",\n", " trust_domain=(20, 1e12)),\n", "\n", " Objective(name=\"bl_det_wid_x\",\n", " target=\"min\",\n", " transform=\"log\",\n", " # trust_domain=(0, 1e12),\n", " latent_groups=[(\"bl_kbh_dsh\", \"bl_kbv_dsv\")]),\n", " Objective(name=\"bl_det_wid_y\",\n", " target=\"min\",\n", " transform=\"log\",\n", " # trust_domain=(0, 1e12),\n", " latent_groups=[(\"bl_kbh_dsh\", \"bl_kbv_dsv\")]),\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "7", "metadata": {}, "outputs": [], "source": [ "agent = Agent(\n", " dofs=dofs,\n", " objectives=objectives,\n", " detectors=[beamline.det],\n", " digestion=beam_stats_digestion,\n", " digestion_kwargs={\"image_key\": \"bl_det_image\"},\n", " verbose=True,\n", " db=db,\n", " tolerate_acquisition_errors=False,\n", " enforce_all_objectives_valid=True,\n", " train_every=3,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "8", "metadata": {}, "outputs": [], "source": [ "RE(agent.learn(\"qr\", n=16))\n", "RE(agent.learn(\"qei\", n=16, iterations=4))\n" ] }, { "cell_type": "code", "execution_count": null, "id": "9", "metadata": {}, "outputs": [], "source": [ "agent.plot_objectives(axes=(0, 1))" ] } ], "metadata": { "kernelspec": { "display_name": "xrt-blop", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }