.. testsetup:: from typing import Any import time import logging from bluesky.protocols import NamedMovable, Readable, Status, Hints, HasHints, HasParent from bluesky.run_engine import RunEngine from bluesky.callbacks.tiled_writer import TiledWriter from tiled.client import from_uri from tiled.server import SimpleTiledServer class AlwaysSuccessfulStatus(Status): def add_callback(self, callback) -> None: callback(self) def exception(self, timeout = 0.0): return None @property def done(self) -> bool: return True @property def success(self) -> bool: return True class ReadableSignal(Readable, HasHints, HasParent): def __init__(self, name: str) -> None: self._name = name self._value = 0.0 @property def name(self) -> str: return self._name @property def hints(self) -> Hints: return { "fields": [self._name], "dimensions": [], "gridding": "rectilinear", } @property def parent(self) -> Any | None: return None def read(self): return { self._name: { "value": self._value, "timestamp": time.time() } } def describe(self): return { self._name: { "source": self._name, "dtype": "number", "shape": [] } } class MovableSignal(ReadableSignal, NamedMovable): def __init__(self, name: str, initial_value: float = 0.0) -> None: super().__init__(name) self._value: float = initial_value def set(self, value: float) -> Status: self._value = value return AlwaysSuccessfulStatus() server = SimpleTiledServer() logging.getLogger("httpx").setLevel(logging.WARNING) db = from_uri(server.uri) tiled_writer = TiledWriter(db) RE = RunEngine({}) RE.subscribe(tiled_writer) dof1 = MovableSignal("dof1") dof2 = MovableSignal("dof2") dof3 = MovableSignal("dof3") readable1 = ReadableSignal("objective1") readable2 = ReadableSignal("objective2") .. testcleanup:: # Suppress stdout from server.close() otherwise the doctest will fail import os import contextlib with contextlib.redirect_stdout(open(os.devnull, "w")): server.close() Using custom generation strategies ================================== This guide will show you how to use custom generation strategies with GPyTorch, BoTorch, Blop, and Ax. Configure an agent ------------------ .. testcode:: from blop import DOF, Objective from blop.ax import Agent dofs = [ DOF(movable=dof1, search_domain=(-5.0, 5.0)), DOF(movable=dof2, search_domain=(-5.0, 5.0)), ] objectives = [ Objective(name="objective1", target="max"), ] agent = Agent( readables=[readable1, readable2], dofs=dofs, objectives=objectives, db=db, ) Configure a generation strategy ------------------------------- The following example shows a generation strategy that uses the Sobol generator for the first 10 trials, and then uses the ``LatentGP`` model for the remaining trials. For more information on generation strategies, see the `Ax documentation `_. This is essentially a thin wrapper around the Ax generation strategy API. There are many different options to configure which we will not cover in depth here. .. note:: The is not part of Ax's backward compatibile API. The ``GenerationStrategy`` may be subject to breaking changes in future versions of Ax. .. testcode:: from ax.generation_strategy.generation_node import GenerationNode from ax.generation_strategy.generation_strategy import GenerationStrategy from ax.generation_strategy.model_spec import GeneratorSpec from ax.generation_strategy.transition_criterion import MinTrials from ax.modelbridge.registry import Generators from ax.models.torch.botorch_modular.surrogate import ModelConfig, SurrogateSpec from botorch.acquisition.logei import qLogNoisyExpectedImprovement from blop.bayesian.models import LatentGP generation_strategy = GenerationStrategy( name="Custom Generation Strategy", nodes=[ GenerationNode( node_name="Sobol", model_specs=[ GeneratorSpec(model_enum=Generators.SOBOL, model_kwargs={"seed": 0}), ], transition_criteria=[ MinTrials( threshold=10, transition_to="LatentGP", use_all_trials_in_exp=True, ), ], ), GenerationNode( node_name="LatentGP", model_specs=[ GeneratorSpec( model_enum=Generators.BOTORCH_MODULAR, model_kwargs={ "surrogate_spec": SurrogateSpec( model_configs=[ ModelConfig( botorch_model_class=LatentGP, input_transform_classes=None, model_options={}, ), ], ), "botorch_acqf_class": qLogNoisyExpectedImprovement, "acquisition_options": {}, }, model_gen_kwargs={ "optimizer_kwargs": { "num_restarts": 10, "sequential": True, }, }, ), ], ), ], ) Configure the experiment and set the generation strategy -------------------------------------------------------- .. testcode:: agent.configure_experiment(name="latentgp-generation-strategy", description="LatentGP generation strategy") agent.set_generation_strategy(generation_strategy) Run the experiment with Bluesky ------------------------------- .. testcode:: RE(agent.learn(iterations=12, n=1)) Verify the generation strategy was used --------------------------------------- .. testcode:: df = agent.summarize() assert "LatentGP" in df["generation_node"].values